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Abstract. In a system-of-systems, the number of possible combinations of in-
teractions among the systems is theoretically infinite. System “unravelings”
have an intelligence of their own as they expose hidden connections, neutralize
redundancies, and exploit chance circumstances for which no system engineer
might plan. In this paper, we propose a new paradigm for system-of-systems
design. Rather than decompose each system within the system-of-systems in a
functional fashion, we treat the system-of-systems as a single entity that is
comprised of abstract classes. We demonstrate how our paradigm can be used
to both avoid the introduction of accidental complexity and control essential
complexity by applying object-oriented concepts of decentralized control flow,
minimal messaging between classes, implicit case analysis, and information-
hiding mechanisms. We argue that our paradigm can aid in the creation of
sound designs for the system-of-systems in contrast to creating a federation of
systems through a highly coupled communication medium.

1 Introduction1

During the past decade, systems-of-systems have exploded into the battlespace of the
joint and coalition warfighters. The acquisition community’s response in the U.S.
Department of Defense to the rabid craving for more accurate information and more
lethal functionality has been a less than stellar hobbling of various legacy systems and
ongoing system developments through tightly coupled and lowly cohesive communi-
cation shackles.

While there are many issues with system-of-systems acquisitions, the first issue
that we must address is the requirements definition and allocation issue. Just as the
requirements issue continues to plague single-system acquisitions, the requirements
issue is much more complicated in the acquisition of system-of-systems. For exam-
ple, many of the systems that comprise a system-of-systems may be legacy systems

1 This research is supported by the U.S. Missile Defense Agency. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright annotations thereon.
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that operate as stand-alone capabilities in the operational world, having been devel-
oped with specific sets of requirements and with specific system functionality in
mind. Additionally, just as we developed the legacy systems, we are developing new
systems that will become members of a system-of-systems under similar conditions.
That is, we are developing these systems as stand-alone capabilities with specific sets
of requirements and with specific system functionality in mind.

Now comes the desire to slam these various systems together and connect these
systems through some communication medium in the hope of achieving greater func-
tionality, although this tack does not necessarily result in the intended synergistic
effect. One can identify the systems that will form the system-of-systems, and then
set out to bend, fold, spindle, and mutilate these systems in the fevered hope of pro-
ducing a functional composition: it is difficult to think about the system-of-systems
as a single entity, which may explain why system developers sometimes mistakenly
focus on modifying individual systems with little deliberation and consideration for
the system as a whole.

1.1 Current Approach to Developing System-of-Systems

Our tools for reasoning about a system-of-systems typically consist of little more
than a “sticks-and-circles” diagram. The “circles” represent the various systems that
comprise the system-of-systems while the “sticks” are means of information transfer,
a messaging protocol, and, perhaps, a translator box to translate the messaging format
from one system to another. Armed with this sophomoric view of the system-of-
systems, we attempt to analyze and describe the system-of-systems through a trivial
picture of the various systems as connected by a convoluted labyrinth of lines. Un-
fortunately, sticks-and-circles diagrams lack both a formal semantics and the richness
needed to express the many dimensions of system behavior. Are the circles meant to
represent systems, subsystems, modules, classes, objects, functions, hardware, or
some other entity? Are the sticks meant to represent data flow, triggers, synchroniza-
tion, calls, inheritance, or something else? [1]

Much too often, we initiate detailed design and coding from reasoning about the
sticks-and-circles diagrams. During the development, we add new layers of features
and functional enhancements to the system software without clear insight into the
organization of the system software. Inevitably, the basic organization of the soft-
ware that seemed so reasonable at the beginning of the development process begins to
break apart under the weight of the revisions made to the system software. [2] Sadly,
the software development becomes another casualty to report in future studies as to
why software developments are not successful.

Traditionally, this methodology failed to achieve an interoperable and integrated
system-of-systems. With each new failure, the system engineers attempted to “tighten
up” the protocol standard; however, the system-of-systems did not achieve the desired
degree of interoperability and integration. The end-state is a collection of systems
that are tightly coupled with a realized protocol standard that only serves to greatly
increase the system-of-systems software complexity.

As we have witnessed time and again, system software critical interactions increase
as the complexity of highly integrated systems increases. In the complex system-of-
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systems, these possible combinations are practically limitless. System “unravelings”
have an intelligence of their own as they expose hidden connections, neutralize re-
dundancies, and exploit chance circumstances for which no system engineer might
plan. [4] A software fault in one module of the system software may coincide with
the software fault of an entirely different module of the system software. This unfore-
seeable combination can cause cascading failures within the system.

Software complexity and size are dramatically increasing in our delivered prod-
ucts. Customers are demanding more features in their systems in less time than ever
before. Under the demands of management, software developers scurry to coding
with only a minimal of planning and reasoning about software architectures and sys-
tem requirements. As a result of this mad rush to the goal line, software developers
are stumbling and fumbling the ball—rarely scoring a touchdown. Unfortunately,
software developers are building software products that have about a 26% chance of
completing on time and on budget. For Government software projects, developers
have about an 18% chance of completing their projects on time and on budget.
Moreover, the delivered products will have fewer features and functions than origi-
nally desired by the customer. [8] Of great alarm to the Department of Defense, only
2% of the software was usable as delivered. [5]

1.2 A New Paradigm for Developing System-of-Systems

How do we reason about such a structure so that we have at least a modicum of
chance to realize a functional system-of-systems? Can we extend the existing set of
tools that we use in reasoning about a single system development to the more com-
plex system-of-systems development? If true, can we use these tools to identify po-
tential sources of accidental system software complexity?

A maxim espoused in all engineering disciplines is to “keep it simple.” The best
we can do in software engineering is to minimize “accidental complexity” and control
“essential complexity.” Accidental complexity occurs due to a mismatch of para-
digms, methodologies, and application tools. Essential complexity is a fact of soft-
ware engineering in that system software is inherently complex because software
applications are the most complex entities that humans build. As system software is
used in ways never envisioned by the developers, operators tend to demand that ex-
tensions be made to their system software. [7]

While we cannot address all of the issues that negatively impact the development
(and follow-on maintenance) of system software, we will examine the issue of re-
quirements specification for system-of-systems. Typically, detailed system specifica-
tions address merely the leaves of the system-decomposition tree. [9] Software engi-
neers cannot develop a sound and complete software package from only the very
detailed system specifications. Indeed, software engineers require several layers of
abstraction beginning at the top layer of abstraction down to the very detailed system
specifications. It is at the upper layers of abstraction in which software engineers
reason about the system and make architectural and design decisions.

We argue that a new paradigm needs to be adopted by the acquisition community
in which the system-of-systems is treated as a single functional entity during require-
ments specification and analysis. Our initial research to develop the new paradigm
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has centered on the application of object-oriented design (OOD) techniques in con-
junction with the Unified Modeling Language (UML), which we report on in the case
study presented in the next section.

2 A Case Study from Missile Defense

We begin the discussion of our proposed paradigm by first introducing a hypothetical
missile defense system: it is a system-of-systems made of legacy systems and sys-
tems to be constructed for providing new functionality for the composite system.
Figure 1 is a sticks-and-circles diagram of our hypothetical system.

Fig. 1. Components of our hypothetical missile defense system

The greatest source of system software faults will occur in the integration of the
various systems. With respect to our case study, the missile defense system will be a
complex product that will contain many discrete software packages within each sys-
tem. As a rule, these software packages will be developed independent of each other
and programmed in many different languages. Additionally, the system will include
legacy systems that are currently in operation. The means of integrating these ele-
ments and legacy systems are intricate tactical data links that support the message
transfer within the system-of-systems.

It is difficult to reason about requirements and analyze the system-of-systems by
relying on the sticks-and-circles view. Although presented as a single entity, it is
challenging to understand the affects of requirements changes and component limita-
tions in this view. As previously mentioned, our reasoning tendency is to focus on the
individual systems of the system-of-systems in the hope that the desired functionality
wondrously appears.

Unfortunately, magic and marvel are not tools that are abundantly available to
system developers. Their fervent yet futile hopes for integrated systems and desired
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functionality too often fall shattered on the road of broken acquisition dreams. Frus-
tration and antipathy are the frequent products of system-of-systems development.

Let us propose another view of the missile defense system in which we apply UML
and OOD techniques. We will develop a class diagram with abstract classes for the
major components of the system-of-systems. We will reason about the class diagram
in our attempt to develop subclasses to which we can begin to allocate requirements
and analyze system capabilities and limitations. Additionally, we will identify mes-
sage requirements and message flow in our attempt to reduce coupling in the system-
of-systems by developing requirements for simplified interfaces between the compo-
nents. Finally, we will propose a reassignment of methods to increase the cohesion of
the components.

The object-oriented paradigm offers a new system-of-systems requirements and
design methodology that provides for both minimizing accidental complexity and
controlling essential complexity through the use of decentralized control flow, mini-
mal messaging between classes, implicit case analysis, and information-hiding
mechanisms.

While the hypothetical missile defense system will not be a pure object-oriented
design, we can incorporate many of the principles of object-oriented design to de-
crease the complexity of the artifacts produced during the development of the system-
of-systems. We believe that software engineers of system-of-systems can use this
object-oriented paradigm to produce a sound design for the system-of-systems rather
than the traditional federation of systems through a highly coupled communication
medium.

2.1 Definition of Classes

The first step in modeling a system-of-systems using our paradigm is to develop a
class diagram of abstract classes. For the hypothetical missile defense system-of-
systems, we will use the following five classes, with the corresponding class diagram
shown in Figure 2:
1. Threat Missile: The Threat Missile class is the enemy missile that contains war-

head of mass destruction: nuclear, chemical, or high explosive munitions. The ad-
versary will launch the threat missile within the confines of his state. The missile
will climb into the exo-atmospheric region that constitutes up to 80% of the missile
flight. The missile will re-enter the atmosphere over our forces or defended assets
at which time it will impact at its aim point.

2. Sensor: The Sensor class is the object that detects the threat missile. Sensor is an
abstraction of two subclasses: Infrared class and Radar class.

3. BM/C2: The Battle Manager/Command and Control (BM/C2) class processes
track data from the sensor. The BM/C2 monitors the threat missile, develops firing
solutions to negate the threat missile, and directs a weapon to launch its interceptor
with the BM/C2-provided firing solution. The BM/C2 class is an abstraction for
all system echelons of battle management.

4. Weapon: The Weapon class develops firing solutions, calculates the probability
of kill, and implements the BM/C2 authorization to engage the threat missile.



6 Dale S. Caffall and James B. Michael

5. Interceptor: The Interceptor class is the engagement mechanism that negates the
threat missile. The Interceptor class is the abstraction for both directed and kinetic
energy intercepts of the threat missile.

The message requirements in the above class diagram are very specific as compared
to the single, large network interface in Figure 2. One can readily determine the
messaging requirements of each class, such as the Sensor class determines the
attributes of the Threat Missile class, the BM/C2 class needs formed track data from
the sensor class, Weapon class waits for control data from the BM/C2 class, and
Interceptor class waits for the interceptor release command from the Weapon class.

Fig. 2. Class diagram of our hypothetical missile defense system-of-systems
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2.2 Definition of Abstract Interfaces and Subclasses

From the class diagram in Figure 2, we can begin to define abstract interfaces be-
tween the classes. Rather than the largely unmanageable and complex network inter-
face of the sticks-and-circles diagram, we can begin to develop specific interface
requirements from the class-diagram approach.

Let us add detail to the Threat Missile class as this is the point of reference for our
missile defense system. We can develop subclasses (i.e., short-, medium, and long-
range threat missiles) of the threat missile class as depicted in Figure 3.

Fig. 3. Subclasses of Threat Missile class2

In our definition of the subclasses, we have assigned attribute values. In our ex-
ample, we have assigned fictitious data so that our example remains out of the classi-
fied regime. These subclasses with the assigned attributes will form the basis for our
reasoning about the missile defense system.

The sensor class is responsible for detecting the Threat Missile class, so let us de-
velop subclasses that can detect the Threat Missile subclasses that we have defined.
The subclasses for the sensor class are depicted in Figure 4.

By considering the subclasses of the threat missile class, we can design a sensor
framework for which we can attain overlapping coverage of our sensor subclasses to
greatly increase our opportunities for the detection of the threat missiles. We can also

2 All attribute values listed in subclasses are fictitious and do not represent real threat missile
data.
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develop additional requirements to bolster our detection capability. For example,
after considering the Threat Missile subclasses for a potential adversary, we may
desire to increase the sensing range of the Sea-Based Sensor to extend our coverage
into an adversary’s territory into which a Ground Sensor solution is not feasible. We
can now levy this requirement change on the Sea-Based Sensor subclass.

Fig. 4. Subclasses of Sensor class3

After we have detected a Threat Missile object, then we must develop a firing so-
lution and engage the threat missile. As depicted in Figure 2, the BM/C2 class han-
dles these functions and several other important functions. While these functions are
related, the incorporation of these methods in a single class lessens the cohesion of the
class. Rather than a single BM/C2 class, we might develop the BM/C2 class as an
aggregate of several classes as shown in Figure 5.

As depicted in Figure 2, we separated the methods for developing and realizing a
firing solution from the BM/C2 class and assigned these methods to the Weapon

3 The attribute values, as in Figure 3, are fictitious and do not represent real threat missile data.
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class. These methods are similar in function so the cohesion of this class is high.
This separation is important as the realizations of the BM/C2 class and the Weapon
class may physically reside on different hardware platforms. So, in addition to in-
creasing the cohesion, we reduce the coupling by substituting more interfaces that are
small and better defined for the larger interface required for data flow and messaging
of the sticks-and-circles architecture depicted in Figure 2. The Weapon class and its
associated subclasses are shown in Figure 6.

Fig. 5. BM/C2 class as an aggregate

Lastly, we consider the Interceptor class. Given the attributes of the Threat Missile
class as well as potential deployment of our hypothetical missile defense system, we
can develop the attributes and associated requirements for the Interceptor class. For
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can determine minimum velocities for our three subclasses of the Interceptor class.
These subclasses are depicted in Figure 7.

Fig. 6. Subclasses of Weapon class
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Fig. 7. Subclasses of Interceptor class
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reducing the message traffic among classes to only that which is necessary to com-
plete the missile defense missions and functions, we can prevent external programs
from inadvertently modifying the state of a given class or injecting superfluous mes-
sage traffic that may cause undesired system-of-systems behavior. [6]

By defining a data-only interface strategy, we can greatly reduce the coupling of
the missile defense components. A data-only interface design will result in a data-
only integration realization. That is, each system within the missile defense system-
of-systems will provide data that is suitable for transport and use by another system.
Thus, the missile defense system-of-systems will exhibit the following properties [3]:
• More likely to work with legacy software code
• No build-time coupling in any system
• Missile defense systems are not required to share a common platform
• Missile defense systems can share a database to store exchanged data
A final benefit of realizing many small, well-defined interfaces rather than a single
large interface will be the flexibility for incorporating future changes in a given class
without negatively affecting the other classes. By data hiding and minimal message
traffic, the software within a missile defense class is effectively independent in struc-
ture and realization than the other classes. As such, an internal software change to
any single missile defense class should not affect any other class given that the inter-
faces among the classes remain unchanged. [6]

2.4 Inheritance and Decentralized Control Flow

As we define the class and subclass attributes, the concept of inheritance becomes
important in that the allocation of requirements through attributes and methods en-
sures consistency in the realization of the subclasses in our developments. Each sys-
tem developer will know the minimum set of requirements that must be implemented
and each developer knows what requirements the other developers will realize.

By careful assignment of methods to each class, we can avoid the creation of the
so-called “god class” that performs the bulk of the work within the system-of-sys-
tems. [7] Typically, we overload the battle manager function with the vast majority
of the work. More often than not, the battle manager software contains many dis-
similar tasks and requires a complex messaging network. Rather than primarily ex-
changing control or triggering messages among several classes, the typical battle
manager requires the continual transport of great amounts of data that results in more
complex rules of messaging and bandwidth requirements. By employing the afore-
mentioned UML and OOD techniques, we can reassign methods to other classes in
which these methods are better suited.

For example, consider the discriminate method listed in the BM/C2 class in Figure
2. This requires that the Sensor class send a great deal of data to the BM/C2 class.
Perhaps we might reason that the Sensor class should contain the discriminate method
and send a much smaller, refined track file to the BM/C2 class for prosecution. This
would greatly reduce the messaging requirements and greatly simplify the interface
between the Sensor class and the BM/C2 class.
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2.5 Encapsulation

As we reason about the classes and subclasses of the hypothetical system, we find
that we can modify the methods to maximize the benefits of data hiding within the
appropriate class. In the large sticks-and-circles network of Figure 1, nearly all data
is public by definition of the single, large interface to each system. By developing
appropriate methods for each class, we can begin to hide data within its class.

For example, consider the development of a firing solution for a given threat mis-
sile. In the large sticks-and-circles network, the firing solution uses public data that is
visible to all other systems. Because the data is public and the network connects each
system to all other systems, it is difficult for software designers to understand the
impact on system behavior as it is not readily apparent what system functionality is
dependent on the public data.

On the other hand, we can determine the data requirements for the development of
the firing solution in the Weapon class in Figure 6, and understand that the software
developers should hide that data within the Weapon class. While this data hiding may
be more difficult in procedural software, the public data issue is more readily apparent
in the class views of the system-of-systems than in the large sticks-and-circles net-
work diagram.

3 Conclusion

By applying UML and OOD techniques to the system-of-systems development, we
can glean a great deal more insight into the system-of-systems requirements definition
and allocation issues than with the conventional sticks-and-circles diagrams so often
used to model these large, complex systems. By developing a class diagram with
abstract classes for the major components of the system-of-systems, we can reason
about the class diagram in our attempt to develop subclasses to which we can begin to
allocate requirements and analyze system capabilities and limitations. Additionally,
we can identify message requirements and message flow in our attempt to reduce
coupling in the system-of-systems by developing requirements for simplified inter-
faces between the components. Finally, we can reassign methods to increase the
cohesion of the components and we can hide data within a class to minimize the
negative impacts of future modifications to either the system functionality or the data.

These aforementioned benefits of applying these UML and OOD techniques can-
not be derived from the traditional views of system-of-systems designs. While soft-
ware designers encounter other problems in system-of-systems designs, we believe
that software developers can more easily reason about the system-of-systems re-
quirements and associated allocation, thereby improving the system-of-systems ar-
chitectures and designs by employing the techniques previously outlined in this dis-
cussion.
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